Spectroscopic evidence for Fermi liquid-like energy and temperature dependence of the relaxation rate in the pseudogap phase of the cuprates

Seyed Iman Mirzaei,a Damien Stricker,b Jason N. Hancockb,c Christophe Berthod,d Antoine Georgesac,d Erik van Heumen,a,e Mun K. Chan,f Xudong Zhao,a,g Yuan Li,j Martin Greven,f Neven Barisicgil and Dirk van der Marelh,i

aDépartement de Physique de la Matière Condensée, Université de Genève, 1211 Geneva, Switzerland; bDepartment of Physics and the Institute of Materials Science, Stors, CT 06119; Centre de Physique Théorique, Ecole Polytechnique, Centre National de la Recherche Scientifique, 91128 Palaiseau, France; cCollège de France, 75005 Paris, France; dVan der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands; eSchool of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455; fState Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China; gInternational Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; hInstitute of Physics, 10000 Zagreb, Croatia; and iService de Physique de l’Etat Condensé, Commissariat à l’Energie Atomique, Direction des Sciences de la Matière (DSM)-Institut Rayonnement Matière de Saclay (IRAMIS), 91198 Gif-sur-Yvette, France.

Edited by David Pines, University of California, Davis, CA, and approved February 25, 2013 (received for review October 29, 2012)

Cuprate high-Tc superconductors exhibit enigmatic behavior in the nonsuperconducting state. For carrier concentrations near “optimal doping” (with respect to the highest Tc) the transport and spectroscopic properties are unlike those of a Landau–Fermi liquid. On the Mott-insulating side of the optimal carrier concentration, which corresponds to underdoping, a pseudogap removes quasiparticle spectral weight from parts of the Fermi surface and causes a breakup of the Fermi surface into disconnected nodal and antinodal sectors. Here, we show that the near-nodal excitations of underdoped cuprates obey Fermi liquid behavior. The lifetime \(\tau_0\) of a quasi-particle depends on its energy \(\omega\) as well as on the temperature \(T\). For a Fermi liquid, \(1/\tau_0(\omega, T)\) is expected to collapse on a universal function proportional to \((\omega h)^\delta + (\pi kr^0)^2\). Magneto-transport experiments, which probe the properties in the limit \(\omega \to 0\), have provided indications for the presence of a \(\omega^2\) dependence of the dc \(\tau_0(\omega=0)\) resistivity of different cuprate materials. However, Fermi liquid behavior is very much about the energy dependence of the lifetime, and this can only be addressed by spectroscopic techniques. Our optical experiments confirm the aforementioned universal \(\omega^2\) and temperature dependence of \(1/\tau_0(\omega, T)\), with \(p \sim 1.5\). Our data thus provide a piece of evidence in favor of a Fermi liquid-like scenario of the pseudogap phase of the cuprates.

optical spectroscopy | superconductivity | mass renormalization | self energy

The compound HgBa2CuO4±δ (Hg1201) is the single-layer cuprate that exhibits the highest \(T_c\) (97 K). We therefore measured the optical conductivity of strongly underdoped single crystals of Hg1201 (\(T_c = 67\) K). Here we are interested in the optical conductivity of the CuO2 layers. We therefore express the optical conductivity as a 2D sheet conductance \(G(\omega) = d_c\sigma(\omega)\), where \(d_c\) is the interlayer spacing. The real part of the sheet conductance normalized by the conduction quantum \(G_0 = 2e^2/h\) is shown in Fig. 1. As seen in the figure, a gap-like suppression below 140 meV is clearly observable for temperatures below \(T_c\) and remains visible in the normal state up to \(\sim 250\) K. This is a clear optical signature of the pseudogap. We also observe the zero-energy mode due to the free charge carrier response, which progressively narrows upon lowering the temperature. In materials where the charge carrier relaxation is dominated by impurity scattering, the width of this “Drude” peak is expected to be of the relaxation rate of the charge carriers. Relaxation processes arising from interactions have the effect of replacing the constant (frequency-independent) relaxation rate with a frequency-dependent one. The general expression for the optical conductivity of interacting electrons is then

\[G(\omega, T) = \frac{i\alpha}{\hbar\alpha + M(\omega, T)} G_0. \]

[1]

The spectral weight \(K\) corresponds to minus the kinetic energy if the frequency integration of the experimental data is restricted to intraband transitions. The effect of electron–electron interactions and coupling to collective modes is described by the memory function \(M(\omega, T) = M_2(\omega, T) + iM_2(\omega, T)\), where \(M_2(\omega, T) = 1/\tau(\omega, T)\) represents the dynamical (or optical) relaxation rate in the case of a Fermi liquid.

The zero frequency limit of the optical conductivity of Fig. 1 corroborates the recently reported temperature dependence of the dc resistivity (1) as shown in Fig. 2. Because \(K\) is practically temperature independent in the normal state (2), the low-temperature \(T^*\) dependence of the resistivity is due to the quadratic temperature variation of \(M_2(0, T) = \hbar/\tau(0, T)\). The infrared data confirm that Hg1201 exhibits the lowest residual resistance among the cuprates and a change to a linear temperature dependence above \(T^*\) associated with the sudden closing of a pseudogap (3, 4). Fig. 2F shows this as a clear departure from the \(T^2\) curve at \(-5 \times 10^4\) K². The dc transport data, owing to the higher precision, allow for Hg1201 crystals of the same composition and doping to identify \(T^* \sim 350\) K as the temperature above which the resistivity has a linear temperature dependence, and \(T^* \sim 220\) K as the temperature below which the temperature dependence is purely quadratic. Finally, superconducting fluctuations become noticeable at \(T \sim 85\) K.

The doping dependences of \(K\) and of the coherent spectral weight, defined as \(K^c = (1/(1 + M_2(\omega, T)\hbar\alpha/\alpha))\), are summarized in Fig. 3 for a number of hole-doped cuprates. The theoretical values of \(K^c\) based on the band parameters obtained from local density approximation (LDA) ab initio calculations are about a factor of 2 larger than the measured values, which is due to strong correlation predicted by the Hubbard model for \(U/\tau \geq 4\) (6). \(K\) decreases when the hole doping decreases, but does not extrapolate to zero for zero doping in accordance with the

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Funded by National Science Foundation (NSF) Grant No. DMR-0922991. The authors declare no conflict of interest.

Its free of charge and is available online through the PNAS open access option.

To whom correspondence should be addressed. E-mail: Dirk.VanDerMarel@unige.ch.

www.pnas.org/cgi/doi/10.1073/pnas.1218846110
occurs because (evidence that a Mott insulator is approached as the doping is repressed (10, 11) or (show a plot of the frequency- and temperature-dependent mass doped Hg1201 with without vanishing of the nodal spectral weight (12, 13).

\[K^0 = 496 \text{ meV}, \]

in agreement with the trend observed for La2-xSrxCuO4 (8) and YBa2Cu3O6.5 (9). This provides strong evidence that a Mott insulator is approached as the doping is reduced. It cannot be determined from these data whether this occurs because (i) the quasi-particle residue is gradually suppressed (10, 11) or (ii) the Fermi surface arcs shrink to zero without vanishing of the nodal spectral weight (12, 13).

The real and imaginary parts of the memory function of underdoped Hg1201 with \(T_c = 67 \text{ K} \) are shown in Fig. 4 for frequencies from 10 to 390 K. \(M(\omega, T) \) has a linear slope extrapolating to \(\omega = 0 \), which becomes less steep at higher temperatures. The maximum at \(\sim 105 \text{ meV} \) erodes gradually as temperature increases, but a residue of this structure remains visible even at 390 K. In Fig. 4E we show a plot of the frequency- and temperature-dependent mass enhancement factor \(m^*(\omega, T) = M(\omega, T) / \hbar \omega + 1 \). Above 60 meV \(m^*(\omega, T) \) is a monotonously decreasing function of temperature. For \(\omega \) that is not too large, \(m^*(T) \) is roughly linear, and at low temperature, with a weak maximum at \(T_{\text{max}} \) followed by a linear-like decrease at higher temperature. \(T_{\text{max}} \) increases when \(\omega \) decreases and for \(\omega = 0 \) extrapolates to 212 K \(\sim T^* \), indicating another way of identifying \(T^* \). The increase of \(m^*(\omega, T) \) from about 3 at 390 K to 5 at \(T^* \), taken together with the strong temperature dependence of \(M(\omega, T) \) near its maximum at 105 meV, indicates that the charge carriers become increasingly renormalized when the temperature decreases. Our results also corroborate the observation in ref. 14 that the integrated optical conductivity does not decrease when \(T \) decreases, so that no opening of an optical pseudogap is seen when, at \(T^* \), part of the Fermi surface is removed by a pseudogap, despite the emergence at this temperature of a novel ordered state with two Ising-like magnetic collective modes at 54 and 39 meV as observed with inelastic neutron scattering (15).

Turning now to the dynamical relaxation rate \(h^{-1} M_2(\omega, T) = 1 / \tau(\omega, T) \), we observe from Fig. 4 that its frequency dependence exhibits an upward curvature for all temperatures. Also, the temperature dependence has a \(T^* \) component at the lowest frequencies. Earlier indications for \(T^* \) dependence of the scattering rate came from the dc \((\omega = 0) \) resistivity (1, 16, 17). For frequencies above 50 meV this component is either absent or completely masked by the onset of superconductivity (gray segments of the temperature traces). Although \(M_2(\omega, T) \) has no maximum as a function of temperature, the curves have an inflection point which shifts from roughly 200 to 100 K when the frequency is raised from 10 to 50 meV. The saturation of \(m^*(\omega, T) \) and the merger of the resistivity with a \(T^* \) dependence indicate that the system enters a Fermi-liquid-like state at \(\sim 200 \text{ K} \). We notice that at temperatures above \(T^* \) the initial rise is given by a linear slope as a function of \(\omega^2 \) (Fig. 5, Inset). For an ideal Fermi liquid, \(M(\omega, T) \) in the relevant range of \(\omega \) and \(T \) is, to a good approximation,

\[
M(\omega, T) \equiv \left[\frac{1}{Z} - 1 \right] \hbar \omega + i C(\hbar \omega)^2 + (p \hbar k_B T)^2, \tag{2}
\]

where \(Z \) is proportional to the quasi-particle residue, \(C \) is a constant with units of inverse energy, and \(p = 2 \) (ref. 18 and Supporting Information). To check possible Fermi liquid characteristics of the data, we introduce a single parameter \(\xi \) defined as \(\xi = (\hbar \omega)^2 + (p \hbar k_B T)^2 \), and we investigate \(M_2 \) as a function of \(\xi \). As shown in Fig. 6 for three underdoped cuprate materials [Hg1201, ortho-II Y Ba2Cu3O6.5 (Y123) (ref. 19), and Bi2201 (ref. 20)] with hole concentration \(x \approx 0.1 \), the \(M_2 \) data of the normal state collapse in the low-energy range on a single scaling curve for \(p = 1.5 \). This value of \(p \) was obtained by searching for the best scaling collapse for \(1 \leq p \leq 2 \) in steps of 0.1 (Supporting Information). Comparing the functional form of \(M_2(\xi) \) for these three materials, we make the following observations: (i) Going from Hg1201 to Bi2201 (Fig. 6, Left and Right, respectively) in this plot, the residual \((\xi = 0) \) value of \(M_2(\xi) \) increases from 0 to about 80 meV. Indeed, it is generally thought that the relatively low values of \(T_c \) in single-layer Bi2201 have to do with strong scattering by disorder (1, 21). (ii) We also notice that in the case of Bi2201 some negative curvature appears at the lowest energies, which is an indication that the Fermi liquid characteristics are affected to some extent, and appear to be relatively fragile with respect to disorder. (iii) The implications of the loss of scaling above 100 meV in the Bi2201 data are not entirely clear. In principle there is no reason to expect scaling, because this is clearly beyond the range of “universal" Fermi liquid behavior. However, the single-parameter scaling seems to persist into this regime for the other two materials (Y123 and Hg1201), leading to the speculation that impurity scattering also contributes to the disappearance of scaling above 100 meV for the Bi2201 sample.
Fig. 3. Conduction band spectral weight per CuO$_2$ layer for a large number of cuprate superconductors. Closed symbols: coherent spectral weight K^*. The gray line is a linear least-squares fit, $K^* = 496x$, where x is the nominal hole doping. Open symbols: total spectral weight, K. Data are presented for Hg1201 with 10% doping (see Supporting Information). For the other materials see table 1 in ref. 5. The black solid curve represents K calculated from ab initio band parameters for Hg1201 (Supporting Information). For the Bi$_2$Sr$_2$CuO$_{4+y}$ (Bi2201) sample with hole doping below 0.10, K^* could not be calculated, because in this case we obtain $M_1(\omega, T) < 0$ for $\omega \rightarrow 0$, possibly due to disorder.

The most important observation borne out by these data is that the frequency dependence of $M_1(\omega, T)$ and $M_2(\omega, T)$ follows by and large the behavior expected for a Fermi liquid: At low frequencies and temperatures $M_1(\omega, T)$ is indeed a linear function of ω, and $M_2(\omega, T)$ scales with $(\hbar \omega + p\Delta_k T)^2$. Other hints at possible Fermi liquid behavior came from the recent discovery of quantum oscillations at low temperature and high magnetic field in underdoped YBa$_2$Cu$_3$O$_{6.8}$ (13) and YBa$_2$CuO$_4$ (22), from the observation of the Fermi–Dirac statistics underlying the quantum oscillations (23), and from the two-fluid analysis (24) of NMR data (25). We note that recent theories (e.g., refs. 26–28) have emphasized the possible relevance of Fermi liquid concepts—or a hidden form of these in the superconducting regime (29)—to the metallic state of hole-doped cuprates. Our experimental observations provide a strong indication for further theoretical work in this direction. We highlight two striking aspects of the data: (i) The slope $dM_1(\omega, T)/d\omega$ for $\omega \rightarrow 0$ decreases significantly as a function of increasing temperature; and (ii) $p < 2$. We speculate that these data are related to the progressive filling-in of the pseudogap as a function of increasing temperature. Already in a two-fluid picture of a nodal Fermi liquid in parallel to an antinodal liquid, nonuniversal features (for Fermi liquids) are introduced in the optical conductivity, because the properties at the Fermi surface change gradually from Fermi liquid at the nodes (30) to strongly incoherent and pseudogapped at the hot spots near the antinodes (31). In fact, also in other compounds p is found to be different from 2 (32–34). Recently, Maslov and Chubukov interpreted this as a combination of Fermi liquid scattering and an additional source of elastic scattering from magnetic moments or resonant levels (35).

Theoretically, it is expected that the T^2- and ω^2 dependence of $M_2(\omega, T)$ is limited to $\hbar \omega$ and $p \Delta_k T$ lower than some energy scale ξ_0, which in the context of single-parameter scaling behavior of a Fermi liquid is proportional to the effective Fermi energy. Electronic correlations strongly reduce this energy scale compared with the bare Fermi energy. For most materials the issue of the Fermi liquid-like frequency dependence of $M_2(\omega, T)$ has remained largely unexplored. This is related to the difficulty that in cases such as the heavy fermion materials where this type of coupling dominates, the range of Fermi liquid behavior is smaller than 10 meV, making it particularly difficult to obtain the required measurement accuracy in an infrared experiment. Clean underdoped cuprates present in this respect a favorable exception because, as can be seen from Figs. 5 and 6, the relevant energy scale ξ_0 is about 100 meV for a doping level around 10%. Above this energy, $M_2(\omega, T)$ crosses over to a more linear trend as a function of both ω and T. This suggests that in cuprates the range of applicability of Fermi liquid behavior is limited by a different scattering mechanism that develops at high T and high ω as the pseudogap gets filled.

The ξ^*-dependence of the relaxation rate can be understood as follows: An electron at a distance ξ^* above the Fermi energy can, as a result of electron–electron interactions, decay to a final state $\xi^*\Omega$ by creating an electron–hole pair of energy Ω. The density of states of electron–hole pairs is the spin (charge) susceptibility $\xi(\Omega)$, which in the context of single-parameter scaling behaves as

$$\xi(\Omega) \sim \Omega^{\gamma - 1}$$

for $\Omega \gg \xi_0$, with $\gamma = 3$ for weak coupling. The parameter γ is linked to the critical exponent ν of the mean-field theory by $\gamma = 3 + \nu$. For a change in the density of states Ω times the Fermi level Δ_k, the relaxation rate Γ obeys

$$\Gamma(\Omega) \sim \Omega^{-\gamma}.$$
In summary, we have shown from optical spectroscopy measurements that the ungapped near-nodal excitations of underdoped cuprate superconductors obey Fermi liquid behavior even in the metallic state, in strong contrast to some established paradigms, which is at variance with some established paradigms.

Materials and Methods

Sample Preparation. Single crystals were grown using a flux method, characterized, and heat treated to the desired doping level as described in refs. 37 and 38. The conductivity data in Fig. 1 are of a sample which has an onset critical temperature of 67 K and a transition width of 2 K.

Fig. 5. Dynamical relaxation rate of underdoped Hg1201. Imaginary part of the function of underdoped Hg1201 ($T_c = 67$ K) for temperatures between 10 and 390 K in 20-K steps as a function of ω^2. Thick lines are used to highlight the 70-, 280-, and 390-K data. (Inset) Zoom of the low-ω range showing a linear fit; temperatures are from 70 to 270 K in 20-K steps.

$\chi''(\Omega)$, where spin (charge) refers to electron–hole pairs carrying (no) net spin. $\chi''(\Omega)$ can be strongly renormalized, but the property that $\chi''(\Omega) \Omega^\beta$ is generic for Fermi liquids (24). Integration of the susceptibility multiplied with the interaction vertex $\tilde{F}_2^\beta(\Omega)$ over all possible decay channels from zero to ξ leads us to conclude that indeed $M_2 \propto \xi^\beta$, as reported experimentally in the present article. In this description the cross-over ξ_0 corresponds to the energy where $\tilde{F}_2^\beta(\Omega)$ is truncated, leading to a leveling off of M_2 for $\xi > \xi_0$. The strong temperature dependence of $M_1(\omega, T)$ is also a natural consequence of this description; it was shown in ref. 36 that, in leading orders of temperature, $\chi''(\Omega)$ of a correlated Fermi liquid decreases as a function of temperature.

In summary, we have shown from optical spectroscopy measurements that the ungapped near-nodal excitations of underdoped cuprate superconductors obey Fermi liquid behavior when materials with reduced amount of disorder are considered. This observation, which is at variance with some established paradigms, provides leads toward understanding of the metallic state and high-temperature superconductivity in these materials.

Fig. 6. Collapse of the frequency and temperature dependence of the relaxation rate of underdoped cuprate materials. Normal state $M_2(\omega,T)$ as a function of $\xi^2(\omega^2) + (p^2kT)^\beta$ with $p = 1.5$. (A) Hg1201 ($x \geq 0.1, T_c = 67$ K). (B) Y123 ($x \leq 0.1, T_c = 57$ K), spectra by Hwang et al. (19) (digitized data of Fig. 1c, represented here as a function of Ω). (C) Bi2201 ($x \leq 0.1, T_c = 10$ K); data of van Heumen et al. (20) represented here as a function of ω^2. The data displayed in A and C are in 10-K intervals with color coding indicated for temperatures in 40-K steps. In between these steps the color evolves gradually as a function of temperature. In B the color coding is given for all temperatures displayed.

within a few minutes. Before each measurement the surface is carefully checked for any evidence of oxidation.

Comparison with dc Resistivity. Transport measurements have been performed using the four-terminal method. Due to the irregular shape of the cleaved samples the absolute value of the dc resistivity can only be determined with about 20% accuracy. However, we obtained very high relative accuracy of the temperature dependence of the dc resistivity, as seen from identical temperature dependences of samples of the same composition and doping, regardless of having significantly different dimensions and shapes. An independent check of the dc resistivity was obtained from the $\omega = 0$ limit of the experimental infrared optical conductivity (Fig. 2). The dc resistivity had to be scaled by a factor of 0.66 to match the optical data, most likely due to the aforementioned influence of the irregular shape of the crystals on the absolute value of the measured dc resistances. The excellent match of the two temperature dependences demonstrates the high quality of both dc resistivity and optical conductivity data.

ACKNOWLEDGMENTS. We thank A. Chubukov, A. J. Leggett, T. Giamarchi, T. M. Rice, and T. Timusk for discussions and communications. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, X. Z. acknowledges support from the National Natural Science Foundation of China; N.B. acknowledges support from the European Commission under the [Intra-European Fellowships (IEF)] Marie Curie Fellowship Programme; and E.V.H. acknowledges support through the Vernieuwingssimpels (VENI) program funded by the Netherlands Organisation for Scientific Research.

