Contents

Foreword V
Preface XIX
List of Contributors XXI

1 Introduction to the Science of Complex Metallic Alloys 1
Jean-Marie Dubois, Esther Belin-Ferré, and Michael Feuerbacher
1.1 Introduction 1
1.2 Complex Metallic Alloy: What Is It? 2
1.2.1 Composition and Varieties 3
1.2.2 Complexity at a Glance 4
1.2.3 Defects 6
1.3 Complex Metallic Alloy: Why Is It Complex? 12
1.3.1 Electronic Densities of States and Hume-Rothery Rules 12
1.3.2 Self-Hybridization in Al-Mg Alloys 15
1.4 A Brief Survey of Properties 18
1.4.1 Transport Properties 18
1.4.2 Surface Physics and Chemistry 20
1.4.3 Surface Energy 22
1.4.4 Plasticity 25
1.5 Potential Applications 30
1.5.1 Applications Related to Surface Energy 30
1.5.2 Applications Related to Transport Properties 33
1.5.3 Applications Related to Dispersion of Particles in a Matrix 35
1.6 Conclusion and Introduction of the Following Chapters 36
References 36

2 Properties of CMAs: Theory and Experiments 41
Enrique Maciá and Marc de Boissieu
2.1 Introduction 41
2.2 Electronic-Structure-Related Properties 43
2.2.1 Transport Properties of Quasicrystals and Approximants 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1.1</td>
<td>Inverse Matthiessen Rule</td>
<td>43</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Current–Voltage Curves</td>
<td>44</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Optical Conductivity</td>
<td>45</td>
</tr>
<tr>
<td>2.2.1.4</td>
<td>Seebeck Coefficient</td>
<td>49</td>
</tr>
<tr>
<td>2.2.1.5</td>
<td>Wiedemann–Franz Law</td>
<td>49</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Chemical Trends</td>
<td>53</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Electronic Structure</td>
<td>56</td>
</tr>
<tr>
<td>2.2.3.1</td>
<td>Fermi-Level -Pseudogap</td>
<td>56</td>
</tr>
<tr>
<td>2.2.3.2</td>
<td>Fine Spectral Features</td>
<td>57</td>
</tr>
<tr>
<td>2.2.3.3</td>
<td>Spectral Conductivity Models</td>
<td>59</td>
</tr>
<tr>
<td>2.2.3.4</td>
<td>The Role of Critical States</td>
<td>60</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Phenomenological Approaches</td>
<td>63</td>
</tr>
<tr>
<td>2.2.4.1</td>
<td>Kubo–Greenwood Formalism of Transport Coefficients</td>
<td>63</td>
</tr>
<tr>
<td>2.2.4.2</td>
<td>Application Examples</td>
<td>67</td>
</tr>
<tr>
<td>2.3</td>
<td>Phonons</td>
<td>71</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Phonons: An Introduction</td>
<td>71</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Measuring Phonons: Inelastic Neutron and X-Ray Scattering</td>
<td>75</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Coherent Inelastic Neutron Scattering</td>
<td>75</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Incoherent Inelastic Neutron Scattering</td>
<td>78</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Beyond the Harmonic Approximation</td>
<td>78</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Phonons in Quasicrystals and their Approximants</td>
<td>81</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>The Zn2Mg Laves Phase</td>
<td>81</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>The i-Al-Pd-Mn Icosahedral Quasicrystal</td>
<td>86</td>
</tr>
<tr>
<td>2.3.4.3</td>
<td>The i-Zn-Mg-Sc Quasicrystal and its 1/1 Zn-Sc Approximant</td>
<td>88</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Phonons in Cage Compounds and Thermoelectricity</td>
<td>95</td>
</tr>
<tr>
<td>2.3.5.1</td>
<td>Clathrates</td>
<td>96</td>
</tr>
<tr>
<td>2.3.5.2</td>
<td>Skutterudites</td>
<td>101</td>
</tr>
<tr>
<td>2.3.5.3</td>
<td>Zinc-Antimony Alloy Zn4Sb3</td>
<td>103</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Phonon and Transport Properties: The Example of Thermoelectricity</td>
<td>105</td>
</tr>
<tr>
<td>2.3.6.1</td>
<td>Thermal Conductivity</td>
<td>105</td>
</tr>
<tr>
<td>2.3.6.2</td>
<td>Thermoelectric Figure of Merit</td>
<td>106</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusion</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>Anisotropic Physical Properties of Complex Metallic Alloys</td>
<td>117</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>3.2</td>
<td>Structural Considerations and Sample Preparation</td>
<td>118</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Y-Al-Ni-Co</td>
<td>118</td>
</tr>
<tr>
<td>3.2.2</td>
<td>o-Al13Co</td>
<td>119</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Al4(Cr,Fe)</td>
<td>119</td>
</tr>
<tr>
<td>3.3</td>
<td>Anisotropic Magnetic Properties</td>
<td>120</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Y-Al-Ni-Co</td>
<td>120</td>
</tr>
<tr>
<td>3.3.2</td>
<td>o-Al13Co</td>
<td>120</td>
</tr>
</tbody>
</table>
3.3.3 $\text{Al}_4(\text{Cr},\text{Fe})$ 122
3.4 Anisotropic Electrical Resistivity 124
3.4.1 Y-Al-Ni-Co 124
3.4.2 $\text{o-Al}_{13}\text{Co}_4$ 125
3.4.3 $\text{Al}_4(\text{Cr},\text{Fe})$ 126
3.5 Anisotropic Thermoelectric Power 130
3.5.1 Y-Al-Ni-Co 130
3.5.2 $\text{o-Al}_{13}\text{Co}_4$ 131
3.5.3 $\text{Al}_4(\text{Cr},\text{Fe})$ 132
3.6 Anisotropic Hall Coefficient 132
3.6.1 Y-Al-Ni-Co 132
3.6.2 $\text{o-Al}_{13}\text{Co}_4$ 134
3.6.3 $\text{Al}_4(\text{Cr},\text{Fe})$ 135
3.7 Anisotropic Thermal Conductivity 136
3.7.1 Y-Al-Ni-Co 136
3.7.2 $\text{o-Al}_{13}\text{Co}_4$ 136
3.7.3 $\text{Al}_4(\text{Cr},\text{Fe})$ 138
3.8 Fermi Surface and the Electronic Density of States 140
3.8.1 Y-Al-Ni-Co 140
3.8.2 $\text{o-Al}_{13}\text{Co}_4$ 142
3.8.3 $\text{Al}_4(\text{Cr},\text{Fe})$ 142
3.9 Theoretical $\textit{Ab Initio}$ Calculation of the Electronic Transport Coefficients 144
3.9.1 Anisotropic Hall Coefficient of Y-Al-Ni-Co 146
3.9.2 Anisotropic Transport Coefficients of $\text{o-Al}_{13}\text{Co}_4$ 148
3.9.2.1 Electrical Resistivity 148
3.9.2.2 Electronic Thermal Conductivity 149
3.9.2.3 Hall Coefficient 150
3.10 Conclusion 151
References 152

4 Surface Science of Complex Metallic Alloys 155
Vincent Fournée, Julian Ledieu, and Jeong Y. Park
4.1 Introduction 155
4.2 Surface-Structure Determination 156
4.2.1 Surface Preparation 156
4.2.2 Structure from Real-Space Methods 159
4.2.3 Structure from Reciprocal-Space Methods 165
4.2.4 Structure from $\textit{Ab Initio}$ Methods 167
4.2.5 Stability of Alloy Surfaces 169
4.3 Electronic Structure 170
4.3.1 The Pseudo-Gap Feature 170
4.3.2 Nature of the Electronic States 175
4.4 Thin-Film Growth on CMA Surfaces 177
4.4.1 Low-Coverage Regime 178
4.4.1.1 Nucleation Mechanism 178
4.4.1.2 Identification of the Trap Sites 179
4.4.1.3 Pseudomorphic Layers 181
4.4.2 Multilayer Regime 184
4.4.2.1 Twinning of Nanocrystals 184
4.4.2.2 Intermixing and Alloying 185
4.4.2.3 Electron Confinement 186
4.5 Adhesion, Friction and Wetting Properties of CMA Surfaces 188
4.5.1 Wetting Properties 188
4.5.2 Atomic-Scale Adhesion Properties of Complex Metallic Alloys 190
4.5.2.1 Continuum-Mechanics Models 190
4.5.2.2 Adhesion on Clean and In-Situ Oxidized Quasicrystal Surfaces 191
4.5.2.3 Adhesion Measured in the Elastic and Inelastic Regime 192
4.5.2.4 Adhesion on Air-Oxidized Quasicrystal Surfaces 193
4.5.3 Atomic-Scale Friction Properties 194
4.5.3.1 Friction-Measurement Apparatus – FFM and Tribometer 194
4.5.3.2 Friction on Atomically Clean and In-Situ Oxidized Quasicrystal Surfaces 196
4.5.4 Friction Anisotropy 197
4.5.4.1 Friction Anisotropy of Clean 2-Fold Al-Ni-Co Surface 198
4.5.4.2 Friction Anisotropy After Surface Modification 200
4.5.4.3 Low Friction of Quasicrystals and Its Relation with Wetting and Adhesion 200
4.6 Conclusion 201
References 202

5 Metallurgy of Complex Metallic Alloys 207
Saskia Gottlieb-Schoenmeyer, Wolf Assmus, Nathalie Prud’homme, and Constantin Vahlas
5.1 Introduction 207
5.2 Basic Concepts of Crystal Growth 208
5.2.1 Bridgman Method 210
5.2.2 Zone Melting 212
5.2.3 Czochralski Technique 212
5.2.4 Flux Growth Technique 214
5.3 Examples of Single-Crystal Growth of CMAs 215
5.3.1 Al13Co4 and Al13Fe4 Using the Czochralski Technique 215
5.3.2 Single-Crystal Growth of β-Al-Mg 217
5.3.2.1 Bridgman Growth 218
5.3.2.2 Czochralski Growth 218
5.3.2.3 Self-Flux Growth 218
5.3.3 Single-Crystal Growth of Mg32(Al,Zn)49 219
5.3.3.1 Bridgman Growth 219
5.3.3.2 Czochralski Growth 220
5.3.4 Single-Crystal Growth of Al-Pd-Mn Approximants 221
7.3 Metal Matrix Composites Reinforced with CMAs 290
7.3.1 Processing of Aluminum Matrix Composites Reinforced with CMAs 291
7.3.1.1 Thermal Stability of CMAs in Al-Based Matrix Composites 291
7.3.1.2 Preserving Complex Phases in Al-Based Matrix Composites 292
7.3.2 Mechanical Properties of Al-Based Composites Reinforced with CMAs 294
7.4 Surface Mechanical Testing and Potential Applications 299
7.4.1 Fretting Tests (Cold Welding) of CMAs 299
7.4.2 Friction Properties of Composites 306
7.4.2.1 CMA Matrix Composites 306
7.4.2.2 Al-Based Composites Reinforced with CMAs 309
7.5 Conclusions 311
References 312

8 CMA's as Magnetocaloric Materials 317
Spomenka Kobe, Benjamin Podmiljšak, Paul John McGuiness, and Matej Komelj
8.1 Introduction 317
8.2 Materials 320
8.2.1 Theoretical Investigation of the Magnetocaloric Effect 320
8.2.1.1 Gd₅Si₂Ge₂ 321
8.2.1.2 LaFe₁₃₋ₓSiₓ 321
8.2.2 Elemental Magnetocalorics 322
8.2.3 Intermetallic Compounds 323
8.2.3.1 Laves Phases 323
8.2.3.2 CMAs [Gd₅(Si₁₋ₓGeₓ)₄ Alloys and Related 5:4 Materials] 324
8.2.4 Mn-Based Compounds 326
8.2.4.1 Mn(As₁₋ₓSbx) Alloys 326
8.2.4.2 MnFe(P₁₋ₓAsₓ) Alloys 327
8.2.4.3 Ni₂MnX (X = Ga, In, Sn, Sb) Heusler Alloys 328
8.2.4.4 Miscellaneous Compounds 329
8.2.5 La(Fe₁₃₋ₓMₓ)-Based Compounds 330
8.2.6 Manganites 332
8.2.7 Miscellaneous Intermetallic Compounds 334
8.2.8 Nanocomposites 336
8.2.9 Comparison of MCE Materials 336
8.2.10 Conclusions 337
8.3 Magnetocaloric Effect and Hysteresis Losses of CMAs 337
8.3.1 Substituting Ge and Si with Various Elements to Reduce the Hysteresis Losses 339
8.3.2 Phase Formation and Magnetic Properties of Gd₅Si₂Ge₂ with Fe Substitutions 339
8.3.3 X-Ray Diffraction Measurements 344
8.3.4 Magnetic Measurements 344
9 Recent Progress in the Development of Thermoelectric Materials with Complex Crystal Structures 365
Silke Paschen, Claude Godart, and Yuri Grin
9.1 Introduction 365
9.2 Thermoelectric Figure of Merit 365
9.3 Design Principles 368
9.3.1 Phonon Engineering 368
9.3.2 Electron Engineering 371
9.4 Thermoelectric Materials 372
9.4.1 Zintl Phases 373
9.4.2 Skutterudites 373
9.4.3 Clathrates 376
9.4.4 Zn₄Sb₃ 377
9.4.5 MgAgAs-type (half-Heusler) Phases 379
9.5 Concluding Remarks 380
References 380

10 Complex Metallic Phases in Catalysis 385
Marc Armbrüster, Kirill Kovnir, Yuri Grin, and Robert Schlögl
10.1 Introduction 385
10.2 Why Use Intermetallic Compounds – The General Concept 387
10.2.1 Chemical Bonding 388
10.2.2 Investigating the Stability In Situ 390
10.2.2.1 Bulk Stability 390
10.2.2.2 Surface Stability 393
10.3 The Semihydrogenation of Acetylene 395
10.4 Complex Metallic Phases as Platform Materials for Heterogeneous Catalysis 397
References 398

Index 401